
typical statistics in computer systems –

guilty until proven innocent
(and they mostly aren’t)

I speak for myself only – not for my employer. No confidential data is used.

charles loboz

what is the average of 1, 3, 2, 1000 ? and does it mean anything?

What this is about – and why

●Reasoning about performance and capacity of larger

systems

●You designed an application, optimized the code,

implemented the finest data compression, thoughtfully

minimized network usage.

●Now you face thousands of users hitting hundreds of

servers 24x7 – you have to know how soon you will

run out of serves, storage, face networking bottlenecks.

Resource usage dynamics

• how do you reason about performance of real-world

production systems?

• Bases are the same as for smaller systems:
• you measure/monitor resource usage

• you do some statistical modeling to estimate needed capacity

• except that now you are playing with thousands of

servers and tens of thousands of customers

● big numbers, big bucks, potential for big wastage

• unused hardware costs money, hardware shortage

loses customers (trust and money)

• cloud computing will not solve all these problems

automatically – at least not on that scale:
• How many servers, storage you need on long-term

commitment?

• Is overflow small enough for dynamic resizing?

• What are your customers going to do next week? month?
quarter?

Our analytical tools

●Traditional statistics 101, 201 (cf. Raj Jain)

●Queuing theory (Kleinrock, Menasce)

●What is missing and leading to misleading reasoning:
● Not-so-hidden assumptions – distributions are normal-like, or

exponential or Poisson
● Any other distributions lead to multi-page queuing formulas

● Modelled systems not that simple (queuing theory was invented for
telephony) – practical problems with CPU slicing, disk caching

● Central limit theorem – small print – we need finite standard
deviation - and our distributions mostly do not have it!

●(disclaimer: that does NOT mean we should forget

traditional statistics and queuing theory!)

Non-computer example - height

0

100

200

300

160 180 200

height[cm]

c
o
u
n
t

average: 177.93 average without top 10: 177.89

distribution of height - american men

Non-computer example: income

Resource usage by account
Extreme version of income distribution

0

200

400

0e+00 2e+11 4e+11 6e+11

resource usage

co
un

t

average: 2211720713.42 average without top 1: 1039105860.16

distribution of resource usage

1

10

1e+04 1e+07 1e+10

resource usage

co
un

t

average: 2211720713.42 average without top 1: 1039105860.16

distribution of resource usage - log-log histogram

resource usage by

account in one

cluster
572 accounts, values (188 ,188 ,196
,283 ,304 ,325 ,341,424 …..
64971186176 ,90129686528
,92741255168 ,118879485952
,671774801920)

Of note:

- The largest account usage is 50% of
the total

- The second largest account usage is
9% of the total

- Standard deviation to average is
13…

- Skewness 21, kurtosis 483 –
astronomical (for normal
distribution should be 0,0)

0.00

0.25

0.50

0.75

1.00

fr
a
c

2e+11

4e+11

6e+11

usage

fraction of total usage by account, sorted by size

Heavy-tailed distributions abound

Resource usage by
individual accounts in one
compute (left) and one
storage (right) cluster.

Each blue strip is one
account, yellow denotes
plenty of small accounts
[just edges]

Further details: Loboz, C., Cloud Resource
Usage – Heavy Tailed Distributions
Invalidating Traditional Capacity Planning
Models, Special Edition of Journal of Grid
Computing, J. Grid Comput. 10(1): 85-108
(2012)

http://www.informatik.uni-trier.de/~ley/db/journals/grid/grid10.html#Loboz12

does it mellow with

age?
Percentage of users using 95% of

resources

thick solid - StorageUsed,

thick dashed - Tx,

solid - EgressTransfer,

dashed - InterDCtransfer,

dotted – InternalTransfer.

Summary so far

1. Resource usage distributions are

far from normal.

2. Use log plots and log-log plots

to avoid losing details.

3. Use log-transformations to

estimate parameters – in our

sample the cofv/skew/kurt goes

from 13/21/483 to 0.3/-0.3/-0.5

after log-transformation (it may

not work)

4. Do not hope it will get better

with time/maturity

• Be aware that averaging

usually does not work

for heavy-tailed

distributions

• And most other stats are

dodgy

Moving from static to time series

1. So far we considered data from a single day –’static’

distribution.

2. These distributions on a single day influence

‘dynamic’ behavior – from day to day – a time

series of resource usage

System dynamics

Thought experiment…

• You manage two data centers, each with 1PB storage, 1,000 customers

each with p=0.1 of day-to-day usage change of 10% in any direction

• DC1 customers use on average 1TB with standard deviation of 1TB

(so the largest customer uses about 4TB and the smallest are close to

zero)

• DC2 - the largest customer uses 900TB and the rest use about 0.1TB

each.

• What is the chance of day-to-day DC1, DC2 change in usage of 10%?
• In round numbers: 0% and 10% respectively

Capacity planning –about the future…

• We all know that trading stocks is usually a losing

proposition - the main problem is the volatility of

stock prices – they change randomly

• We estimate volatility by histogramming day-to-day

relative changes in stock price: log(pricet+1/pricet)

• Stocks are crazy to let’s take some stock indexes –

they should be less volatile

Forecasting – volatility – stock indexes

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

log-log plot of 3 stock indexes (2005-2010)

1:S&P500 2:RUSSEL3000 3:WILSHIRE5000

log(day-to-day change)

lo
g
(f

re
q
e

n
c
y
)

Significant difference from ‘normal’ capacity planning

Underlying power-law (fractal)
distribution of resource usage

• so no law of large numbers, no
‘averaging out’ – we have big
sudden swings

Much higher volatility than
stock indexes

• so no predictability in the traditional
sense (we have random walk with
non-normal increments)

Traditional capacity planning
and performance analysis are
based on queuing systems and
normal distributions – we need
to update that - new concepts,
new methods, new
understandings

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

volatility: main stock indexes from 2005 to 2010

1:SPX 2:RAY 3:WINDX

log(day-to-day change)

lo
g

(f
re

q
e

n
cy

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

6

volatility: datacenters/BillingQuantity

log(day-to-day change)

lo
g

(f
re

q
u

e
n

cy
)

Forecasting – volatility – clusters

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4

comp cl BillingQuantity

log(day-to-day change)

lo
g(

fre
qu

en
cy

)

CPU usage distribution is less heavy-tailed than distribution for other
resources (check the earlier bar graphs)

Forecasting – volatility – data centers

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

comp dc BillingQuantity

log(day-to-day change)

lo
g(

fre
qu

en
cy

)

CPU usage distribution is less heavy-tailed than for other resources
(check the earlier bar graphs)

Forecasting – volatility – regions

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4

comp rg BillingQuantity

log(day-to-day change)

lo
g(

fre
qu

en
cy

)

CPU usage distribution is less heavy-tailed than for other resources
(check the earlier bar graphs)

Cluster-level volatility

for other resources–

compared with

S&P500
Spectrum of log-returns;

1-StorageUsed,

2-Tx,

3-EgresTransfer,

4-InternalTransfer,

5-InterDCTransfer;

thin vertical lines are 95th percentiles

for resources, thick vertical lines

denote 95th percentile and maximum

for the S&P500 distribution; blue-

square-S&P500..

What lies beneath

1. buzzwords: chaos theory, nonlinear dynamic

systems, heavy-tailed distributions, Pareto

distributions, power-law distributions

2. 80/20 rule (that’s from Pareto)

3. [Though we seem to have 95/5 rule… we are

extreme Pareto ]

Theory

Power-law probability distribution: 𝑝 𝑥 ∝ 𝑥−𝛼, where 𝛼 is the ‘scaling

parameter’.

In practice power law applies only to a subset of data, values above

threshold.

Shalizi: “In practice, we can rarely, if ever, be certain that an observed

quantity is drawn from a power-law distribution. The most we can say is

that our observations are consistent with the hypothesis that x is drawn

from a distribution of the form (…). In some cases we may also be able to

rule out some other competing hypotheses.”

Estimating power-law distribution

1. Log-log plots – bad, inaccurate - but practical

2. Finding the heavy-tail threshold the right way

1. Probability distribution is 𝑝 𝑥 =
𝛼−1

𝑥𝑚𝑖𝑛

𝑥

𝑥𝑚𝑖𝑛

−𝛼

, where 𝑥𝑚𝑖𝑛

is the smallest value for which power-law holds

2. to estimate 𝑥𝑚𝑖𝑛 and 𝛼 we use MLE with

𝛼 = 1 + 𝑛 𝑘 ln
𝑥𝑖

𝑥𝑚𝑖𝑛

−1

giving

𝑀𝐿𝐸𝑝𝑜𝑤𝑒𝑟 = 𝑛 ln 𝛼 − 1 − ln x𝑥𝑚𝑖𝑛 − 𝛼

𝑘

ln
𝑥𝑖

𝑥𝑚𝑖𝑛

3. (an R function for that attached in the Appendix)

Finding the power-law tail

We have 64 data points in the power-law tail (right-

most blue cross) – and few other hopefuls.

0 100 200 300 400 500

0
.1

0
0

.3
0

D-value spectrum

sorting index

D

xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxx

11% of accounts in the tail – but 98.4% of all resource usage – almost everything is in the tail!

Some consequences

1. Volatilities in resource usage much higher than for stock indexes – problems with forecasting,

confidence bounds.

2. Volatility of the mean is unknown and standard deviation mostly does not exist.

3. Standard capacity calculations implicitly assume tractable distributions – which are rare in

practice.

4. So what can be done ? Aspects:

1. reduce volatility – throttling traffic, usage caps as a part of an SLA, managing most
volatile accounts.

2. the volatility reduction techniques have to be incorporated early in the design and
administration.

3. Smoothing of time series should not be used blindly.

4. The operational cost and customer problem – volatility may require 50% of capacity

buffer instead of 10% - that would cost almost 40% as much money.
5. If you persist in using traditional capacity formulas – be prepared for failure

Some meta-comments

1. We do not think ‘heavy-tails’ – we tend to fall back

on ‘normal distribution’ thinking.

2. It is an extremely difficult habit to overcome. ‘It

will average itself out soon’ – it will not – learn to

live with it.

3. Most life is non-linear and fractal… normal

distributions are the exception, not the rule

4. And our subject matter is more fractal than most

others

Some background reading

• Raj Jain The Art of Computer Systems Performance Analysis ; classic summary, useful compendium, basic

statistical info, queueing theory

• Clauset, A., Shalizi, C. R. and Newman, M. E. J. (2009). "Power-law distributions in empirical data".

SIAM Review 51: 661–703.

• Newman, M. E. J., 2006. Power laws, Pareto distributions and Zipf’s law. Cont. Phys., 46, 323–351.

• Shalizi, C Power Law Distributions, 1/f Noise, Long-Memory Time Series

http://cscs.umich.edu/~crshalizi/notabene/power-laws.html

• Loboz, C., Cloud Resource Usage – Heavy Tailed Distributions Invalidating Traditional Capacity Planning

Models, Special Edition of Journal of Grid Computing, J. Grid Comput. 10(1): 85-108 (2012)

• James, A. and Plank, M. J. On fitting power laws to ecological data arxiv:0712.0613

• Nassim Nicholas Taleb Black Swan [deep background]

• James Gleick Chaos [even deeper background]

http://arxiv.org/abs/0706.1062
http://cscs.umich.edu/~crshalizi/notabene/power-laws.html
http://www.informatik.uni-trier.de/~ley/db/journals/grid/grid10.html#Loboz12
http://arxiv.org/abs/0712.0613

Code by Shalizi (I think)

plfit <-function(x=rpareto(1000,10,2.5),method="limit",value=c(),finite=TRUE,nowarn=TRUE){

#init method value to NULL

vec <- c() ; sampl <- c() ; limit <- c()

test and trap for bad input

switch(method,

range = vec <- value,

sample = sampl <- value,

limit = limit <- value,

argok <- 0)

if(exists("argok")){stop("(plfit) Unrecognized method")}

if(!is.null(vec) && (!is.vector(vec) || min(vec)<=1 || length(vec)<=1)){

print(paste("(plfit) Error: ''range'' argument must contain a vector > 1; using default."))

vec <- c()

}

if(!is.null(sampl) && (!(sampl==floor(sampl)) || length(sampl)>1 || sampl<2)){

print(paste("(plfit) Error: ''sample'' argument must be a positive integer > 2; using default."))

sample <- c()

}

if(!is.null(limit) && (length(limit)>1 || limit<1)){

Sample data

v = c(188 ,188 ,196 ,283 ,304 ,325 ,341,424 ,441 ,443 ,476 ,480 ,484 ,529,541 ,544 ,583 ,604 ,626 ,659 ,822,824 ,858 ,914 ,953 ,1004 ,1056 ,1075

,1077 ,1295 ,1543 ,1582 ,1587 ,1592 ,1594,1606 ,1630 ,1639 ,1655 ,1658 ,1666 ,1677,1679 ,1696 ,1712 ,1732 ,2012 ,2085 ,2172

,2220 ,2691 ,2906 ,2910 ,3035 ,3096 ,3156,3388 ,3576 ,3655 ,3741 ,4254 ,4369 ,4436,4592 ,4625 ,4628 ,4695 ,4971 ,5142 ,5334

,5513 ,6054 ,6337 ,6563 ,6633 ,6653 ,6669,7418 ,7826 ,8780 ,8884 ,9397 ,9783,10266,10378,10908,12186,13062,13082,14167,15110

,15289,15928,16733,17874,17905,19900,20054,20850,21086,21351,21593,22700,26007,27840,34570,37050,41589,42210,45957,55685,56976

,58350,59712,61945,62061,68480,70524,72307,76440,77863,80891,83254,84753,90892,101112,103673,113586,117171,130616,133419,142528,147014

,149385,161956,162259,165056,166947,167375,169320,171395,183200,199417,205187,205294,211752,228929,238721,239193,249623,260805,263377,279410,292641

,294107,309121,321433,326674,352603,376704,387356,390392,392464,402628,402967,423925,433166,440169,444651,446759,452651,457631,463437,485926,507800

,518333,519151,519164,529573,555638,604183,628063,630479,634717,636041,668387,732610,740794,773755,779418,814182,835845,842910,853300,866992,899083

,938743,939946,947816,964552,965179 ,1014971 ,1107057,1108742 ,1169645 ,1176419 ,1178216 ,1204998 ,1221241 ,1316501,1456291 ,1517163 ,1541788 ,1598074

,1632295 ,1637677 ,1710648

,1712867 ,1750058 ,1778146 ,1888581 ,1903817 ,2062790 ,2123088,2129209 ,2136790 ,2170535 ,2312321 ,2357405 ,2403536 ,2534857,2610294 ,2756608 ,2862520

,2893348 ,3000182 ,3192640 ,3220880

,3294378 ,3315556 ,3517828 ,3567835 ,3789428 ,3827286 ,3920232,4195811 ,4403574 ,4430743 ,4453488 ,4507512 ,4525905 ,4577606,4590208 ,4753184 ,4909445

,4999500 ,5027940 ,5146166 ,5302474

,5325075 ,5528844 ,5584281 ,5760840 ,5769281 ,5958012 ,5958385,6014067 ,6027073 ,6104304 ,6158539 ,6237618 ,6277032 ,6363781,6419826 ,6490008 ,6582066

,6671276 ,6808893 ,7001008 ,7111015

,7223519 ,7304495 ,7364244 ,7447713 ,7641262 ,7668925 ,7783074,7784824 ,8113263 ,8150515 ,8312051 ,8654176 ,8980038 ,9086761,9126250 ,9441554 ,9517220

,9577492 ,9642090 ,9647820 ,9952659

,9979308 ,10573264 ,10753338 ,10776849 ,10784664 ,10886581 ,10982208,11087826 ,11998224 ,12224230 ,12256801 ,12372216 ,12513205 ,12553027,12603149

,12651007 ,12701768 ,12760634 ,12791800 ,13091895 ,13130881

