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what is the average of 1, 3, 2, 1000 ? and does it mean anything?  



What this is about – and why

●Reasoning about performance and capacity of larger 

systems

●You designed an application, optimized the code, 

implemented the finest data compression, thoughtfully 

minimized network usage.

●Now you face thousands of users hitting hundreds of 

servers 24x7 – you have to know how soon you will 

run out of serves, storage, face networking bottlenecks.



Resource usage dynamics

• how do you reason about performance of real-world 

production systems?

• Bases are the same as for smaller systems:
• you measure/monitor resource usage

• you do some statistical modeling to estimate needed capacity

• except that now you are playing with thousands of 

servers and tens of thousands of customers

● big numbers, big bucks, potential for big wastage



• unused hardware costs money, hardware shortage 

loses customers (trust and money)

• cloud computing will not solve all these problems 

automatically – at least not on that scale:
• How many servers, storage you need on long-term 

commitment?

• Is overflow small enough for dynamic resizing?

• What are your customers going to do next week? month? 
quarter?



Our analytical tools

●Traditional statistics 101, 201 (cf. Raj Jain)

●Queuing theory (Kleinrock, Menasce)

●What is missing and leading to misleading reasoning:
● Not-so-hidden assumptions – distributions are normal-like, or 

exponential or Poisson 
● Any other distributions lead to multi-page queuing formulas

● Modelled systems not that simple (queuing theory was invented for 
telephony) – practical problems with CPU slicing, disk caching

● Central limit theorem – small print – we need finite standard 
deviation  - and our distributions mostly do not have it!

●(disclaimer: that does NOT mean we should forget 

traditional statistics and queuing theory!)  
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average:  177.93   average without top 10:  177.89

distribution of height - american men



Non-computer example: income



Resource usage by account
Extreme version of income distribution
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resource usage by 

account in one 

cluster
572 accounts, values (188 ,188 ,196 
,283 ,304 ,325 ,341,424 ….. 
64971186176 ,90129686528 
,92741255168 ,118879485952 
,671774801920)

Of note:

- The largest account usage is 50% of 
the total

- The second largest account usage is 
9% of the total

- Standard deviation to average is 
13…

- Skewness 21, kurtosis 483 –
astronomical (for normal 
distribution should be 0,0)
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Heavy-tailed distributions abound

Resource usage by 
individual accounts in one 
compute (left) and one 
storage (right) cluster. 

Each blue strip is one 
account, yellow denotes 
plenty of small accounts 
[just edges]

Further details: Loboz, C., Cloud Resource 
Usage – Heavy Tailed Distributions 
Invalidating Traditional Capacity Planning 
Models, Special Edition of Journal of Grid 
Computing, J. Grid Comput. 10(1): 85-108 
(2012)

http://www.informatik.uni-trier.de/~ley/db/journals/grid/grid10.html#Loboz12


does it mellow with 

age?
Percentage of users using 95% of 

resources

thick solid - StorageUsed, 

thick dashed - Tx, 

solid - EgressTransfer, 

dashed - InterDCtransfer, 

dotted – InternalTransfer.



Summary so far

1. Resource usage distributions are 

far from normal.

2. Use log plots and log-log plots 

to avoid losing details.

3. Use log-transformations to 

estimate parameters – in our 

sample the cofv/skew/kurt goes 

from 13/21/483 to 0.3/-0.3/-0.5 

after log-transformation (it may 

not work) 

4. Do not hope it will get better 

with time/maturity

• Be aware that averaging 

usually does not work 

for heavy-tailed 

distributions

• And most other stats are 

dodgy



Moving from static to time series

1. So far we considered data from a single day –’static’ 

distribution.

2. These distributions on a single day influence 

‘dynamic’ behavior – from day to day – a time 

series of resource usage



System dynamics

Thought experiment…

• You manage two data centers, each with 1PB storage, 1,000 customers 

each with p=0.1 of day-to-day usage change of 10% in any direction

• DC1 customers use on  average 1TB with standard deviation of 1TB 

(so the largest customer uses about 4TB and the smallest are close to 

zero)

• DC2 - the largest customer uses 900TB and the rest use about 0.1TB 

each. 

• What is the chance of day-to-day DC1, DC2 change in usage of 10%?
• In round numbers: 0% and 10% respectively



Capacity planning –about the future…

• We all know that trading stocks is usually a losing 

proposition - the main problem is the volatility of 

stock prices – they change randomly

• We estimate volatility by histogramming day-to-day 

relative changes in stock price: log(pricet+1/pricet)

• Stocks are crazy to let’s take some stock indexes –

they should be less volatile



Forecasting – volatility – stock indexes
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Significant difference from ‘normal’ capacity planning

Underlying power-law (fractal) 
distribution of resource usage

• so no law of large numbers, no 
‘averaging out’ – we have big 
sudden swings

Much higher volatility than 
stock indexes 

• so no predictability in the traditional 
sense (we have random walk with 
non-normal increments)

Traditional capacity planning 
and performance analysis are 
based on queuing systems and 
normal distributions – we need 
to update that - new concepts, 
new methods, new 
understandings

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

volatility: main stock indexes from 2005 to 2010

1:SPX  2:RAY  3:WINDX

log(day-to-day change)

lo
g

(f
re

q
e

n
cy

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

6

volatility: datacenters/BillingQuantity

log(day-to-day change)

lo
g

(f
re

q
u

e
n

cy
)



Forecasting – volatility – clusters
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CPU usage distribution is less heavy-tailed than distribution for other 
resources (check the earlier bar graphs) 



Forecasting – volatility – data centers

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

comp dc BillingQuantity

log(day-to-day change)

lo
g(

fre
qu

en
cy

)

CPU usage distribution is less heavy-tailed than for other resources 
(check the earlier bar graphs) 



Forecasting – volatility – regions
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Cluster-level volatility 

for other resources–

compared with 

S&P500
Spectrum of log-returns; 

1-StorageUsed, 

2-Tx, 

3-EgresTransfer, 

4-InternalTransfer,

5-InterDCTransfer; 

thin vertical lines are 95th percentiles 

for resources, thick vertical lines 

denote 95th percentile and maximum 

for the S&P500 distribution; blue-

square-S&P500..



What lies beneath

1. buzzwords: chaos theory, nonlinear dynamic 

systems, heavy-tailed distributions, Pareto 

distributions, power-law distributions

2. 80/20 rule (that’s from Pareto)

3. [Though we seem to have 95/5 rule… we are 

extreme Pareto ]



Theory

Power-law probability distribution: 𝑝  𝑥 ∝ 𝑥−𝛼, where 𝛼 is the ‘scaling 

parameter’. 

In practice power law applies only to a subset of data, values above 

threshold.

Shalizi: “In practice, we can rarely, if ever, be certain that an observed 

quantity is drawn from a power-law distribution. The most we can say is 

that our observations are consistent with the hypothesis that x is drawn 

from a distribution of the form (…). In some cases we may also be able to 

rule out some other competing hypotheses.”



Estimating power-law distribution

1. Log-log plots – bad, inaccurate - but practical

2. Finding the heavy-tail threshold the right way

1. Probability distribution is 𝑝 𝑥 =
𝛼−1

𝑥𝑚𝑖𝑛

𝑥

𝑥𝑚𝑖𝑛

−𝛼

, where 𝑥𝑚𝑖𝑛

is the smallest value for which power-law holds

2. to estimate 𝑥𝑚𝑖𝑛 and 𝛼 we use MLE with

𝛼 = 1 + 𝑛  𝑘 ln
𝑥𝑖

𝑥𝑚𝑖𝑛

−1

giving

𝑀𝐿𝐸𝑝𝑜𝑤𝑒𝑟 = 𝑛 ln 𝛼 − 1 − ln x𝑥𝑚𝑖𝑛 − 𝛼 

𝑘

ln 
𝑥𝑖

𝑥𝑚𝑖𝑛
 

3. (an R function for that attached in the Appendix)



Finding the power-law tail 

We have 64 data points in the power-law tail (right-

most blue cross) – and few other hopefuls.
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11% of accounts in the tail – but 98.4% of all resource usage – almost everything is in the tail!



Some consequences

1. Volatilities in resource usage much higher than for stock indexes – problems with forecasting,  

confidence bounds.

2. Volatility of the mean is unknown and standard deviation mostly does not exist.

3. Standard capacity calculations implicitly assume tractable distributions – which are rare in 

practice.

4. So what can be done ? Aspects:

1. reduce volatility – throttling traffic, usage caps as a part of an SLA, managing most 
volatile accounts. 

2. the volatility reduction techniques have to be incorporated early in the design and
administration. 

3. Smoothing of time series should not be used blindly.

4. The operational cost and customer problem – volatility may require 50% of capacity 

buffer instead of 10% - that would cost almost 40% as much money. 
5. If you persist in using traditional capacity formulas – be prepared for failure



Some meta-comments

1. We do not think ‘heavy-tails’ – we tend to fall back 

on ‘normal distribution’ thinking. 

2. It is an extremely difficult habit to overcome. ‘It 

will average itself out soon’ – it will not – learn to 

live with it.

3. Most life is non-linear and fractal… normal 

distributions are the exception, not the rule

4. And our subject matter is more fractal than most 

others



Some background reading

• Raj Jain The Art of Computer Systems Performance Analysis ; classic summary, useful compendium, basic 

statistical info, queueing theory

• Clauset, A., Shalizi, C. R. and Newman, M. E. J. (2009). "Power-law distributions in empirical data". 

SIAM Review 51: 661–703.

• Newman, M. E. J., 2006. Power laws, Pareto distributions and Zipf’s law. Cont. Phys., 46, 323–351.

• Shalizi, C Power Law Distributions, 1/f Noise, Long-Memory Time Series 

http://cscs.umich.edu/~crshalizi/notabene/power-laws.html

• Loboz, C., Cloud Resource Usage – Heavy Tailed Distributions Invalidating Traditional Capacity Planning 

Models, Special Edition of Journal of Grid Computing, J. Grid Comput. 10(1): 85-108 (2012)

• James, A. and Plank, M. J.   On fitting power laws to ecological data  arxiv:0712.0613

• Nassim Nicholas Taleb Black Swan  [deep background]

• James Gleick Chaos [even deeper background]

http://arxiv.org/abs/0706.1062
http://cscs.umich.edu/~crshalizi/notabene/power-laws.html
http://www.informatik.uni-trier.de/~ley/db/journals/grid/grid10.html#Loboz12
http://arxiv.org/abs/0712.0613


Code by Shalizi (I think)

plfit <-function(x=rpareto(1000,10,2.5),method="limit",value=c(),finite=TRUE,nowarn=TRUE){

#init method value to NULL

vec <- c() ; sampl <- c() ; limit <- c()

#  test and trap for bad input

switch(method,

range = vec <- value,

sample = sampl <- value,

limit = limit <- value,

argok <- 0)

if(exists("argok")){stop("(plfit) Unrecognized method")}

if( !is.null(vec) && (!is.vector(vec) || min(vec)<=1 || length(vec)<=1) ){

print(paste("(plfit) Error: ''range'' argument must contain a vector > 1; using default."))

vec <- c()

}

if( !is.null(sampl) && ( !(sampl==floor(sampl)) ||  length(sampl)>1 || sampl<2 ) ){

print(paste("(plfit) Error: ''sample'' argument must be a positive integer > 2; using default."))

sample <- c()

}

if( !is.null(limit) && (length(limit)>1 || limit<1) ){



Sample data

v = c(188 ,188 ,196 ,283 ,304 ,325 ,341,424 ,441 ,443 ,476 ,480 ,484 ,529,541 ,544 ,583 ,604 ,626 ,659 ,822,824 ,858 ,914 ,953 ,1004 ,1056 ,1075

,1077 ,1295 ,1543 ,1582 ,1587 ,1592 ,1594,1606 ,1630 ,1639 ,1655 ,1658 ,1666 ,1677,1679 ,1696 ,1712 ,1732 ,2012 ,2085 ,2172

,2220 ,2691 ,2906 ,2910 ,3035 ,3096 ,3156,3388 ,3576 ,3655 ,3741 ,4254 ,4369 ,4436,4592 ,4625 ,4628 ,4695 ,4971 ,5142 ,5334

,5513 ,6054 ,6337 ,6563 ,6633 ,6653 ,6669,7418 ,7826 ,8780 ,8884 ,9397 ,9783,10266,10378,10908,12186,13062,13082,14167,15110

,15289,15928,16733,17874,17905,19900,20054,20850,21086,21351,21593,22700,26007,27840,34570,37050,41589,42210,45957,55685,56976

,58350,59712,61945,62061,68480,70524,72307,76440,77863,80891,83254,84753,90892,101112,103673,113586,117171,130616,133419,142528,147014

,149385,161956,162259,165056,166947,167375,169320,171395,183200,199417,205187,205294,211752,228929,238721,239193,249623,260805,263377,279410,292641

,294107,309121,321433,326674,352603,376704,387356,390392,392464,402628,402967,423925,433166,440169,444651,446759,452651,457631,463437,485926,507800

,518333,519151,519164,529573,555638,604183,628063,630479,634717,636041,668387,732610,740794,773755,779418,814182,835845,842910,853300,866992,899083

,938743,939946,947816,964552,965179 ,1014971 ,1107057,1108742 ,1169645 ,1176419 ,1178216 ,1204998 ,1221241 ,1316501,1456291 ,1517163 ,1541788 ,1598074 

,1632295 ,1637677 ,1710648

,1712867 ,1750058 ,1778146 ,1888581 ,1903817 ,2062790 ,2123088,2129209 ,2136790 ,2170535 ,2312321 ,2357405 ,2403536 ,2534857,2610294 ,2756608 ,2862520 

,2893348 ,3000182 ,3192640 ,3220880

,3294378 ,3315556 ,3517828 ,3567835 ,3789428 ,3827286 ,3920232,4195811 ,4403574 ,4430743 ,4453488 ,4507512 ,4525905 ,4577606,4590208 ,4753184 ,4909445 

,4999500 ,5027940 ,5146166 ,5302474

,5325075 ,5528844 ,5584281 ,5760840 ,5769281 ,5958012 ,5958385,6014067 ,6027073 ,6104304 ,6158539 ,6237618 ,6277032 ,6363781,6419826 ,6490008 ,6582066 

,6671276 ,6808893 ,7001008 ,7111015

,7223519 ,7304495 ,7364244 ,7447713 ,7641262 ,7668925 ,7783074,7784824 ,8113263 ,8150515 ,8312051 ,8654176 ,8980038 ,9086761,9126250 ,9441554 ,9517220 

,9577492 ,9642090 ,9647820 ,9952659

,9979308 ,10573264 ,10753338 ,10776849 ,10784664 ,10886581 ,10982208,11087826 ,11998224 ,12224230 ,12256801 ,12372216 ,12513205 ,12553027,12603149 

,12651007 ,12701768 ,12760634 ,12791800 ,13091895 ,13130881


